Nature-inspired metaheuristics for multiobjective activity crashing
نویسندگان
چکیده
Many project tasks and manufacturing processes consist of interdependent timerelated activities that can be represented as networks. Deciding which of these subprocesses should receive extra resources to speed up the whole network (i. e., where activity crashing should be applied) usually involves the pursuit of multiple objectives amid a lack of a priori preference information. A common decision support approach lies in first determining efficient combinations of activity crashing measures and then pursuing an interactive exploration of this space. As it is impossible to exactly solve the underlying multiobjective combinatorial optimization problem within a reasonable computation time for real world problems, we have developed proper solution procedures based on three major (nature-inspired) metaheuristics. This paper describes these implementations, discusses their strengths, and provides results from computational experiments.
منابع مشابه
New Approaches in Metaheuristics to Solve the Truck Scheduling Problem in a Cross-docking Center
Nowadays, cross-docking is one of the main concepts in supply chain management in which products received to a distribution center by inbound trucks which are directly to lead into outbound trucks with a minimum handling and storage costs as the main cost of a cross-docking system. According to the literature, several metaheuristics and heuristics are attempted to solve this optimization model....
متن کاملA Multiobjective Metaheuristic for Job-shop Scheduling
In this paper, we introduce a nature inspired meta-heuristic for scheduling jobs on computational grids. Our approach is to dynamically generate an optimal schedule so as to complete the tasks in a minimum period of time as well as utilizing the resources in an efficient way. The approach proposed is a variant of particle swarm optimization which uses mutation operator. The mutation operator ca...
متن کاملCACO : Competitive Ant Colony Optimization, A Nature-Inspired Metaheuristic For Large-Scale Global Optimization
Large-scale problems are nonlinear problems that need metaheuristics, or global optimization algorithms. This paper reviews nature-inspired metaheuristics, then it introduces a framework named Competitive Ant Colony Optimization inspired by the chemical communications among insects. Then a case study is presented to investigate the proposed framework for large-scale global optimization.
متن کاملFuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics - Theory and Applications
Find loads of the fuzzy logic augmentation of nature inspired optimization metaheuristics theory and applications studies in computational intelligence book catalogues in this site as the choice of you visiting this page. You can also join to the website book library that will show you numerous books from any types. Literature, science, politics, and many more catalogues are presented to offer ...
متن کاملUsing Nature - Inspired Metaheuristics to Train Predictive Machines
Nature-inspired metaheuristics for optimization have proven successful, due to their fine balance between exploration and exploitation of a search space. This balance can be further refined by hybridization. In this paper, we conduct experiments with some of the most promising nature-inspired metaheuristics, for assessing their performance when using them to replace backpropagation as a learnin...
متن کامل